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Scaling Analysis for the Adsorption Transition in a
Watermelon Network of n Directed
Non-Intersecting Walks1
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The partition function for the problem of n directed non-intersecting walks
interacting via contact potentials with a wall parallel to the direction of the
walks has previously been calculated as an n_n determinant. Here, we describe
how to analyse the scaling behaviour of this problem using alternative represen-
tations of the solution. In doing so we derive the asymptotics of the partition
function of a watermelon network of n such walks for all temperatures, and so
calculate the associated network exponents in the three regimes: desorbed,
adsorbed, and at the adsorption transition. Furthermore, we derive the full
scaling function around the adsorption transition for all n. At the adsorption
transition we also derive a simple ``product form'' for the partition function.
These results have, in part, been derived using recurrence relations satisfied by
the original determinantal solution.

KEY WORDS: Vicious walkers; directed walks; lattice paths; interacting self-
avoiding walks; adsorption transition; watermelon network.

1. INTRODUCTION

The problem of n (fully) directed walks interacting with a wall via contact
interactions on the square lattice is a non-trivial example of a statistical
mechanical system showing a phase transition that is exactly solvable for
finite size as well as in the thermodynamic limit. In addition these lattice
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path problems (as opposed to their continuous analogues) are of con-
siderable significance in enumerative and constructive combinatorics.(1, 2)

As such the set of problems for all n represent an infinite hierarchy of
models, each individually solvable in the full two parameter space of
temperature and system size. In fact there are different variants of these
problems depending on the restrictions placed on the end-points of the
walks. Much is already known about these problems for small n and some
general solutions are known for all n. However the analysis of the functions
involved in the exact solution has not been carried out. In this paper we
provide a full analysis of the scaling behaviour of this set of problems in the
case of one particular type of end-point restrictions.

With n=1 and n=2 exact solutions for the partition functions of fixed
length, with various standard end-point conformations, have been calcu-
lated.(3) In those cases, if one weights each of the contacts with the wall by
a Boltzmann factor, }, then there is an adsorption phase transition at a
value }=}c=2. On the other hand with }=1, that is, the non-interacting
case, (4) much is known about the solutions for all n. This is also true when
there is no wall present(5) at all, known as the bulk case. The exact solution
has been calculated for both the non-interacting and bulk cases: it can be
found from the Gessel�Viennot theorem, (6) when the endpoints of the
walks are fixed, as a determinant.(7, 6, 8, 9) In fact, the determinants, or sums
over determinants if the endpoints are summed over, can be evaluated as
products of (ratios of ) factorials. From such expressions it is a straight-
forward matter to calculate the asymptotics of the partition function, and
so evaluate both the connective constant, which is related to the free energy
(or rather the entropy) and the network exponents, #n , for the topology
concerned. ``Product forms'', (10, 11, 8, 9) which have deep combinatorial
significance, and network exponents(4, 11) can be calculated for both the
standard watermelon and star conformations when a wall is present,
without additional interactions, and also in the bulk. The product forms
can be found by direct determinantal manipulation(11) or by using map-
pings to Young Tableaux and plane partitions.(8)

An important recent development(12) has been the calculation of the
partition function of the interacting problem for all } and for arbitrary n,
with fixed endpoints, in terms of an n_n determinant of n=1 partition
functions. In this way the solution becomes a sum over n! terms each of
which are products of n weighted sums of binomial coefficients. The scaling
analysis for fixed } is therefore problematic due to the complexity of this
expression. Some hope of progress is called for since in the case of n=2 the
determinantal expression has be simplified(3) to what is, essentially, a single
sum. This single sum allows meaningful analysis. The solution in the case
n=2 can also be seen to obey a single difference equation (or recurrence
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relation). Importantly, this difference equation can be analysed for the
asymptotic behaviour of the partition function without appealing to the
solution itself.(3)

For arbitrary n various combinatorial properties of coefficients in
expansions of the partition function have now been found.(13) In particular,
some of these considerations lead to two different recurrence relations for
the partition functions. These recurrences are two variable recurrences in
n and t, where t is the length of the walks. Here we utilise these com-
binatorial properties and the recurrences to derive a single variable
recurrence in the length t for each n; this being the generalisation of the
recurrences mentioned above for n=1 and n=2. We are then able to
provide an analysis of the dominant asymptotic behaviour of the partition
function scaling for all fixed } and for any n. We also are able to derive a
``product form'' for the partition function at }=2: we argue additionally
that such a form is unlikely to exist for all values of }, although we point
out that the coefficients of expansions of the partition function can be
written as products for all }.(13)

Finally, we use one such expansion to calculate an infinite hierarchy
of scaling functions which describe the dominant two variable asymptotics
around the phase transition point. We point out that an exact scaling func-
tion for one, let alone an infinite set of problems, is rare in the literature.

2. DIRECTED-WALK SURFACE-WATERMELONS

We begin by considering the semi-infinite, or half-plane, square lattice
which has been rotated 45% (see Fig. 1). A directed lattice path, or walk,
is a set of occupied sites connected by bonds of the lattice. Moreover, the
walks have steps (the connecting lattice bonds, which are also considered
occupied) in only the north-east or south-east directions. We shall label the
site (s, y) in column s and row y as in Fig. 1. A set of walks is non-intersect-
ing if they have no sites in common. We are concerned with configurations
of n non-intersecting walks, starting and ending at given positions in com-
mon columns of the lattice, each walk being of length t. A walk of ``length''
t contains t+1 occupied sites. Let yj (s), j=1,..., n be the positions of the
walks in column s. Non-intersection implies that yj (s)< yj+1(s), j=1,...,
(n&1) for all 0�s�t. The half-plane restriction implies that yj (s)�0 for
all s and a ``wall'' is considered to exist below the height (or row) y=0.

In this paper we shall restrict ourselves, for the sake of clarity, to so-
called watermelon configurations that start and end on the surface. We
shall call these ``surface-watermelons.'' To be precise if yj (0)= y i

j , j=1,..., N
are the positions of the walks in column s=0 and yj (t)= y f

j , j=1,..., N are
the positions of the walks in column s=t then our watermelons are those
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Fig. 1. Three non-intersecting directed walks of length t=14 in a watermelon configuration
tied to the surface, where yi

j= y f
j =2( j&1). The coordinates for the rows y and columns s are

shown. Also illustrated are the positions of the walks in the columns s=0 and s=t which are
denoted by yi and y f respectively. The walk closest to the lower wall has weight }5.

where yi
j= y f

j =2( j&1). Note that due to the lattice such configurations
are only possible if the numbers of columns spanned by the walks, t, is
even. Odd lengths can be considered by a minor modifications of the
results given below. Hence, we shall only consider walks of length t=2r.

The partition function of n non-intersecting walks interacting with a
wall being in a surface-watermelon configuration, is defined as

Z� (n)
2r (})=:

m

c (n)
2r (m) }m (2.1)

where c (n)
2r (m) is the number of configurations of n-walk surface-water-

melons of length 2r with m sites occupied in row y=0 of the lattice. It has
been shown that the partition function, Z� (n)

2r (}), of n non-intersecting walks
in a surface-watermelon configuration is given by the following determinant:

Z� (n)
2r (})

= }
ZS

2r(0 � 0; }) ZS
2r(0 � 2; }) } } } ZS

2r(0 � 2n&2; })

}
ZS

2r(2 � 0; }) ZS
2r(2 � 2; }) } } } ZS

2r(2 � 2n&2; })
} } } }
} } } }
} } } }

ZS
2r(2n&2 � 0; }) ZS

2r(2n&2 � 2; }) } } } ZS
2r(2n&2 � 2n&2; })

(2.2)
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where ZS
2r(2x � 2y; }) is the partition function for configurations of a single

walk starting at height 2x in column 0 and ending at height 2y in column 2r
in the presence of a wall. The single walk partition function, ZS

2r(2x � 2y; }),
has been calculated(3) as

ZS
2r(2x � 2y; })=\ 2r

r+x& y+&\ 2r
r&x& y+

+} :
l�0

(}&1)l {\ 2r
r&l&x& y+&\ 2r

r&l&x& y&1+=
(2.3)

Note that ZS
2r(0 � 0; })#Z� (1)

2r (}).

3. A REVIEW OF A SINGLE DIRECTED WALK ATTACHED TO A
WALL AT BOTH ENDS

Let us first consider the known results about n=1. The partition func-
tion can be written as an expansion in three different variables. Firstly,
using (2.3) we can write(3)

Z� (1)
2r (})=} :

r

l=0

(}&1)l {\ 2r
r&l+&\ 2r

r&l&1+= (3.4)

which is a polynomial in (}&1). However, there are other expressions for
this quantity: secondly, it can be written as an expansion in the variable }

Z� (1)
2r (})= :

r+1

m=0

}m {\2r&m
r&1 +&\2r&m

r += (3.5)

Related to this expansion is the generating function of the partition func-
tions (or rather generalised partition function)

G� (1)(}; z)= :
�

r=0

Z� (1)
2r (}) z2r (3.6)

which can be evaluated as

G� (1)(}; z)=
}

1&(}�2)(1&- 1&4z2)
(3.7)
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Thirdly, there is also an expansion in the variable

|(})=
}&1

}2 (3.8)

which is

Z� (1)
2r (}(|))=

}(}&2)
}&1

|&r%(}&2)+ :
�

s=r

Cs |s&r (3.9)

where %(x) is a unit step function and Cs is the s th Catalan number,

Cs=
1

s+1 \
2s
s + (3.10)

While somewhat mysterious from the point of view of the walk problem
the variable | is the ``natural'' variable when modelling directed compact
percolation.(14) It is this form that is most useful in the calculation of the
full scaling form around the transition point.

There are two special non-zero and finite values of } where the parti-
tion function can be rewritten as a product. When }=1

Z� (1)
2r (1)=4r `

r

j=1

2j&1
2j+2

(3.11)

and when }=2

Z� (1)
2r (2)=2 4r `

r

j=1

2j&1
2j

(3.12)

It is unlikely that the partition function can be written as such a finite
product of ``simple'' real linear factors for all values of } since the zeros of
the partition function of length 2r&2 and 2r would need to coincide for
most of the zeros: this is not the case even for r=4 for example. This rough
argument does not, of course, rule out other ``special'' values of } for which
their may be product forms.

Importantly the partition function satisfies an inhomogeneous first-
order recurrence (see Eq. (3.29) of ref. 3) which can be converted to the
following homogeneous second-order recurrence

|rZ� (1)
2r &[r+(4r&6) |] Z� (1)

2r&2+(4r&6) Z� (1)
2r&4=0 (3.13)
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Let us now briefly discuss how each of the above expressions can be
used to ascertain the salient features of the asymptotics of the partition
function in the large r limit. In fact, the simplest method to analyse this
problem is through analysis of the singularities of the generating function
and then use of Darboux's Theorem to imply the asymptotic behaviour of
the partition function. For 0<}<2 the generating function has an
algebraic square root singularity at the value zc=1�2, independent of }, on
the positive real axis

G� (1)(}; z)tA �1&
z
zc

as z � zc (3.14)

For }>2 there is a simple pole in the generating function at

zc(})=- |(}) (3.15)

At }=2 the generating function has a divergent square root singularity at
zc=1�2. Hence we can deduce that the partition function has the
asymptotic form

Z� (1)
2r (})tB1 +2r

1 r g
11
(1)

as r � � (3.16)

with

+1(})={
2

1

- |(})

if 0<}�2

if }>2
(3.17)

noting that - |(}) � 1�2 as } � 2 so that +1(}) is continuous, and

&3�2 if 0<}<2

g (1)
11 ={&1�2 if }=2 (3.18)

0 if }>2

The factor B1 is a function of }. The thermodynamic-limit (reduced) free
energy defined as

f (1)(})= lim
r � �

1
2r

log(Z� (1)
2r (})) (3.19)

therefore exists and

f (1)(})=log +1(}) (3.20)
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This implies via (3.17) that the thermodynamic exponent :=0 and that the
associated specific heat has a jump discontinuity.

If one were to attempt to analyse the partition function expressions
directly, the product forms (3.11) and (3.12), only available at }=1 and
}=2, are the simplest to tackle, requiring essentially only Stirling's
approximation. Of the three expansions in }, }&1 and | it is, curiously
enough, the expansion in | that is the most useful to analyse. It gives the
scaling form around the phase transition point }=2 (see Section 3.6.1 of
ref. 3): this has been found as

Z� (1)
2r (}) tb

4r

r1�2 .̂(1) \(}&2)
2

r1�2+ as } � 2 and r � � (3.21)

with

.̂(1)(v)=
2

- ?
+2vev2

erfc(&v) (3.22)

The notation tb refers to the well-defined set (15) of assumptions associated
with the use of crossover scaling asymptotic forms. This is in contrast to
the standard, but ill-defined, use of t in this context (as mentioned by
ref. 16). At the risk of oversimplification, tb adds to t the necessary
asymptotic uniformity and matching conditions for what is essentially a
two variable asymptotic statement. The scaling variable

v=
(}&2)

2
r1�2 (3.23)

gives us immediately that the crossover exponent, ,, of the transition is 1�2.
Lastly, but importantly, the quickest way to find the results (3.17) and

(3.18) without using the generating function is to analyse the recurrence
(3.13) using a dominant balance method(3) (see Section 3.2 and Appendix 1
of that paper).

4. SCALING ANALYSIS OF THE n-WALK PARTITION
FUNCTION

For n directed walks we expect that

Z� (n)
2r (})tBn +2r

n r g 11
(n)

as r � � (4.24)
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where Bn will be a function of }. For n=1 the value of the connective con-
stant +1 and g (1)

11 exponent are given above. Previous work by Forrester(4)

has found at }=1 that +n=2n and

g(n)
11 =&

n(2n+1)
2

(4.25)

The exponents g (n)
11 are the so-called network exponents for this problem. In

this paper we shall calculate network exponents for all values of }.
It may be possible to extend the use of the generating function

approach to arbitrary numbers of walks, though we point out that going
from one to two walks changes the generating function from a simple
algebraic function to a sum of generalised hypergeometric ones. We rather
have taken the more direct route of considering the partition function, or
equations it satisfies, to find its asymptotic behavior.

4.1. Bounds on the Thermodynamic-Limit Free Energy

Standard rigorous arguments(17) can be used to show that the free
energy

f (n)(})= lim
r � �

1
2r

log(Z� (n)
2r (})) (4.26)

exists for all }>0 and that

f (n)(})� f (n)(1) (4.27)

In fact one can show

f (n)(})= f (n)(1)=n log 2 for 0<}�1 (4.28)

The reduced free energy is a continuous and non-decreasing function of }.
Other bounds can be found from standard arguments as

f (n)(1)+log(}1�2)� f (n)(})� f (n&1)(1)+log(}1�2) (4.29)

for }�1. Putting all this information together implies that the free energy
has at least one singularity as a function of }, and that the first singularity
must occur for some 1<}�4.
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4.2. Network Recurrence Relation

In recent work(13) on the combinatorics of this problem the following
two recurrence relations for the partition function were derived:

|Z� (n&1)
2r&2 (1) Z� (n)

2r (})=Z� (n&1)
2r (1) Z� (n)

2r&2(})&}&2Z� (n)
2r&2(1) Z� (n&1)

2r (})

(4.30)

and

Z� (n)
2r (})=}&2[Z� (n&1)

2r (1) Z� (n&1)
2r+4 (})&Z� (n&1)

2r+2 (1) Z� (n&1)
2r+2 (})]�Z� (n&2)

2r+4 (1)

(4.31)

In this derivation all walks were first extended back to the surface so the
determinant corresponding to (2.2) had elements of the type Z� (1)

2r (}). The
most important step was to use a first order recurrence for Z� (1)

2r (}) to
remove the } dependence from all but the last column of the determinant.
The second of the above relations was then obtained by application of
Dodgson's condensation formula(18) to the resulting determinant. The first
was found empirically and proved using a product formula for the coef-
ficients in an | expansion of Z� (n)

2r (}) found by expanding the last column
of the modified determinant in powers of |.

Each of these recurrences contain shifts in both the length 2r and num-
bers of walks involved n. However they can be combined to give

|Z� (n)
2r+4(})&(|\ (n)

r +\ (n&1)
r+1 ) Z� (n)

2r+2(})

+\ (n)
r&1\ (n&1)

r+1 \1+
! (n)

r&1

! (n&1)
r + Z� (n)

2r (})=0 (4.32)

where

\ (n)
r =

Z� (n)
2r+2(1)

Z� (n)
2r (1)

(4.33)

and

! (n)
r =

Z� (n+1)
2r (1)

Z� (n)
2r+2(1)

(4.34)
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As mentioned previously the case }=1 has been analysed extensively and
a simple product form(11) for the partition function, derived by elementary
manipulations of the determinantal form, is known

Z� (n)
2r (1)= `

n

i=1

(2r+2i&2)! (2i&1)!
(r+i&1)! (r+i+n&1)!

(4.35)

Hence

\ (n)
r =

(2r+1)2n

(r+1)2n
(4.36)

and

! (n)
r =

(r+1)r

(2n+2)r
(4.37)

where (a)n=>n
j=1(a+ j&1)=1(a+n)�1(a) with (a)0#1 is the Pochhammer

symbol. This leads here to the explicit form of the recurrence relation
above as

|(r+2n&2)(r+n&1)2
n&1 Z� (n)

2r (})

&4n&1(r& 1
2)n&1 (r+n&1)n&1 ((4r&6) |+r+2n&2) Z� (n)

2r&2(})

+16n&1(4r&6)(r& 1
2)2

n&1 Z� (n)
2r&4(})=0 (4.38)

which is now a recurrence in the length 2r for all fixed numbers of walks n.
It is this recurrence, which we call the ``network-recurrence'' that is the
generalisation of (3.13) to all n.

4.3. Product Form at }=2

When }=2 and so |=1�4 the network-recurrence can be solved to
find a ``product form'' for the partition function as in (4.35) which is valid
for }=1. To see this we write our network-recurrence for general } as

|an
r&1an&1

r Z� (n)
2r (})&4n&1(4|an&1

r bn
r&1+an

r&1 bn&1
r ) Z� (n)

2r&2(})

+16n&14bn
r&1bn&1

r Z� (n)
2r&4(})=0 (4.39)

where

an
r =(r+n)n and bn

r =(r& 1
2)n (4.40)
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Substituting |=1�4 and defining

An
r =22rnZ� (n)

2r (2) (4.41)

we have

An
r &\bn

r&1

an
r&1

+
bn&1

r

an&1
r + An

r&1+
bn

r&1

an
r&1

bn&1
r

an&1
r

An
r&2=0 (4.42)

By inspection of this equation one might guess that An
r �An

r&1 B b�a
without being able to guess the super and sub-scripts required. However,
by examining the n=1 and n=2 solutions(3) one can conjecture

An
r =

bn
r

an
r&1

An
r&1 (4.43)

and it is then a simple matter to show that this satisfies the recurrence. This
result implies

Z� (n)
2r (2)=4n (r& 1

2)n

(r+n&1)n
Z� (n)

2r&2(2) (4.44)

and knowing the initial condition Z� (n)
0 (2)=2, solving the recurrence gives

Z� (n)
2r (2)=22rn+1 `

r

j=1

( j& 1
2)n

( j+n&1)n
=22rn+1 `

n

i=1

(i& 1
2)r

(n+i&1)r
(4.45)

The product form (4.45) derived above and the }=1 product form
(4.35) can be asymptotically analysed to give

Z� (n)
2r (1)tBn, o+2r

n, o r g(n)
11, o as r � � (4.46)

with

+n, o=2n and g (n)
11, o=&

n(2n+1)
2

(4.47)

and

Z� (n)
2r (2)tBn, s+2r

n, sr g(n)
11, s as r � � (4.48)

with

+n, s=2n and g (n)
11, s=&

n(2n&1)
2

(4.49)
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The continuity of the free energy discussed above implies that +n=2n for
0<}�2 at least.

To derive the }=2 result, expressing (4.45) in terms of 1 functions

Z� (n)
2r (2)=22rn+1 `

n

i=1

1 (r+i& 1
2) 1 (i+n&1)

1 (r+n+i&1) 1 (i& 1
2)

(4.50)

and using Stirling's formula to show that (1 (r+i& 1
2)�1 (r+n+i&1))t

r&(n&1�2) gives (4.48) where

Bn, s=2 `
n

i=1

1 (i+n&1)
1 (i& 1

2)
=4(?&1�22n&2)n `

n

i=1

(2i&2)! (4.51)

For comparison we give the result for }=1 which is

Bn, o=(?&1�22n&1)n `
n

i=1

(2i&1)!=
1
2

(2n&1)!
(n&1)!

Bn, s (4.52)

=4n&1 \1
2+n

Bn, s (4.53)

4.4. Use of Recurrence Relations and the Phase Diagram

Both the bootstrap-recurrence (4.30) and network-recurrence (4.38)
relations yield useful information when the dominant balance method is
applied to them. Firstly one assumes a form (4.24) is true at all } as it is
true for }=1 and }=2 from the analyses above, and substitutes this into
the recurrence in question. One then imposes a consistency principle to
extract information. Application of dominant balance to the network-
recurrence (4.38) gives

+n=2n or 2n&1�- | (4.54)

to exponential order. Then by looking at corrections at the order 1�r it
then implies that if |{1�4 and +n=2n then

g(n)
11 =&

n(2n+1)
2

(4.55)

which implies g (n)
11 = g (n)

11, o . Rather, if |{1�4 and +n=2n&1�- | then

g (n)
11 =&

(n&1)(2n&1)
2

(4.56)
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Given that the free energy (and so +n) must be a continuous function of }
with at least one singularity then the only possible solution consistent with
the rigorous bounds discussed above is

+(})={2n

2n&1�- |
if 0<}�2
if }>2

(4.57)

and hence combining the dominant balance arguments, rigorous results
and our }=1 and }=2 analytic results gives

&
n(2n+1)

2
if 0<}<2

g(n)
11 ={&

n(2n&1)
2

if }=2 (4.58)

&
(n&1)(2n&1)

2
if }>2

We have hence calculated the free energy of our surface-watermelons as

f (n)(})={n log(2)
log(|(})&1�2)+(n&1) log(2)

if 0<}�2
if }>2

(4.59)

noting that - |(}) � 1�2 as } � 2 so that f (n)(}) is indeed continuous. In
other words, it simply differs from single walk results (see Fig. 2) by the
constant (n&1) log(2).

Fig. 2. A plot of the free energy, f (1)(}), of a single walk. The free energy of the n-walk
problem differs from this by a constant (n&1) log(2).
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It is of some interest to note that our exponent results for }�2 can
be summarised by a conjectural generalisation of Eq. (3) of ref. 19 (and
results from ref. 11) as

go, s=&1
2 \n&V+Vs+ :

L�1

nb
L'b+ :

L�1

no, s
L 'o, s+ (4.60)

where nb
L is the number of terminating L-leg vertices in the bulk and

'b=L(L&1)�2, no
L is the number of terminating L-leg vertices attached to

the wall with ``ordinary'' boundary conditions (}<2) and 'o=L2, ns
L is the

number of terminating L-leg vertices attached to the wall with ``special''
boundary conditions (}=2) and 's=L(L&1), V is the total number of
vertices while Vs is the total number of surface vertices. Hence for our sur-
face-watermelons V=Vs=2 while nb

L=0 for all L. When }<2 no
n=2 while

no
L=0 for L{n and ns

L=0 for all L. When }=2 ns
n=2 while ns

L=0 for
L{n and no

L=0 for all L. It is interesting to compare this to the conformal
invariance expressions for undirected walks such as ref. 20. Also, on physical
grounds one would assume that for }>>2 the walk closest to the wall is
essentially completely stuck to the wall and so g (n)

11 (}>2)= g (n&1)
11 (}<2),

which is indeed the case.
Our conjectured formula enables the following prediction for a water-

melon network attached to the surface at one end only with the other free
to move in the bulk.

&
3n2+n&2

4
if 0<}<2

g(n)
1 ={&

(n&1)(3n+2)
4

if }=2 (4.61)

&
(n&1)(2n&1)

2
if }>2

The first of these formulae was originally derived by Forrester(4) and the
others are in agreement with the cases n=1 and 2 of ref. 3. The last of the
formulae is based on our previous argument that for }>>2 the chain
closest to the wall is stuck to the wall so it makes no difference whether the
end of the network is attached or not, thus g (n)

1 (}>2)= g (n)
11 (}>2).

Lastly, for the sake of comparison let us also apply the dominant
balance method to the bootstrap-recurrence (4.30). One finds that if +n=2n

that

g(n)
11 = g (n)

11, o or g (n)
11 = g (n&1)

11 + g (n&1)
11, o & g (n&2)

11, o &1 (4.62)
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which implies

g (n)
11 = g (n)

11, o or g (n)
11 =&

n(2n&1)
2

(4.63)

This second value we can recognise as g (n)
11, s (the }=2 value). It also

implies that if +n{2n then

+n=2n&1 and g (n)
11 = g (n)

11, o=&
(n&1)(2n&1)

2
(4.64)

but since we know +1 from (3.17), and hence know that +n{2n for }>2
only, we can deduce that +n is given by the same formula (4.57) as derived
from the network-recurrence and rigorous arguments. However since
+n=2n implies one of two exponents one would need to invoke universality
to deduce that the exponent is constant if the free energy is analytic and
only changes at points of non-analyticity to give the complete solution. So
while the bootstrap-recurrence doesn't require the (rigorous) continuity
arguments to give + as a function of } as did the network-recurrence
analysis it does require universality to imply the value of the exponents. If
we did not have the }=2 product form results the two dominant balance
analyses could be used together to give us the same conclusions for the free
energy and exponents.

4.5. Scaling Functions

Certain bijections(13) have allowed the calculation of an expansion in
the variable | for the n-walk partition function Z� (n)

2r similar to (3.9). This
expansion

Z� (n)
2r (})=Z� (n)

2r (1) }&2(n&1) :
�

s=0

f (n)
r (s) |s (4.65)

where

f (n)
r (s)=\n+s&1

s + (2r+2n&1)2s

(r+n)s (r+2n)s
(4.66)

is a ``formal'' expansion and it can be seen by comparison to the n=1
result (3.9) to be valid only when }�2. It can however be extended to
}>2 using the n=1 result as a guide. Here however we are interested in
the calculation of a scaling function around }=2 and so all we need do
is to calculate the scaling function for }�2 and then find its analytic
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continuation to }>2. This should give us an entire function, (15, 3) and this
method should be equivalent to first ``guessing'' the complete solution and
later calculating the scaling function (see Section 3.6 of ref. 3) from this
complete solution.

We begin by changing the ``dummy'' summed-over variable to t=s+r
so that defining

R (n)
r (})=}2(n&1) Z� (n)

2r (})

Z� (n)
2r (1)

(4.67)

we have

R(n)
r (})=|&r :

�

t=r

f (n)
r (t&r) |t (4.68)

Next we rewrite

f (n)
r (t&r)=

1
(n&1)!

(t&r+1)n&1

gt

gr
(4.69)

where

gs=
1 (2s+2n&1)

1 (s+n) 1 (s+2n)
(4.70)

Now we have calculated that

gst
4s+n&1

- ?
s&n&1�2 as s � � (4.71)

This gives us part of what we require to simplify f (n)
r (t&r) in the large

r limit. Now we need to consider the other factor (t&r+1)n&1 . Since we
are only interested in the dominant asymptotics of R (n)

r we consider the
terms in the expansion of (t&r+1)n&1 that give the largest power of tarb,
that is, a+b is largest. This largest power is n&1. Hence we write

(t&r+1)n&1= `
n&1

j=1

(t&r+ j )=(t&r)n&1+O(tarb
% a+b=n&2)

(4.72)

Substituting (4.71) and (4.72) into (4.69) and the result into (4.68) gives

R (n)
r (})t :

�

t=r

(4|)t&r \r
t+

n+1�2

(t&r)n&1 (4.73)
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and, with u=t�r, as r � � for }�2, replacing the sum by an integral gives

R(n)
r (})t

rn

(n&1)! |
�

1
e&(r log 1�4|)(u&1)(u&1)n&1 u&(n+1�2) du (4.74)

Note that this expression is uniform in } for }�2 and the corrections are
of order 1�r. To obtain the scaling function valid as } � 2 we make the
approximation

log
1

4|
r\}&2

2 +
2

(4.75)

Hence with a change to the scaling variable (3.23) v=((}&2)�2) r1�2 used
in the single walk case we can write, as } � 2& and r � �

R (n)
r (}) tb

rn

(n&1)! |
�

1
e&v2(u&1)(u&1)n&1 u&(n+1�2) du=rnU \n,

1
2

, v2+
(4.76)

where U(a, b, y) is a confluent hypergeometric function and is one of the
solutions to Kummer's differential equation (see p. 504 of ref. 21).

While elegant this result is only valid for v�0 but, expanding the
integrand,

R (n)
r (}) tb

rn

(n&1)!
:

n&1

k=0

(&1)n&k&1 \n&1
k + / \v2, n&k+

1
2+

as r � � (4.77)

where

/( y, b)=|
�

1
e&y(u&1) du

ub (4.78)

By applying an easily derivable recurrence for the integrals /( y, b) and
noting that this integral with b= 1

2 can be written in terms of the com-
plementary error function which is an entire function (and so provides the
required analytic continuation to v>0),

/ \v2,
1
2+=&

1
v

ev2
erfc(&v) (4.79)
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one finds

Z� (n)
2r (}) tb

22nr

rn(2n&1)�2 .̂(n) \(}&2)
2

r1�2+ as } � 2 and r � � (4.80)

with

.̂(n)(v)=C (n) \pa(v)+
- ?

v
ev2

erfc(&v) pb(v)+
(4.81)

where the polynomials pa(v) and pb(v) are

pa(v)= :
n&1

j=0

(&1) j \n&1
j + :

j+1

l=1

(&1)l&1 v2l&2

( j&l+ 3
2)l

(4.82)

and

pb(v)= :
n&1

j=0
\n&1

j + v2j+2

( 1
2)j+1

(4.83)

The multiplying constant

C (n)=
Bn, o

4n&11 (n)
=\1

2+n

Bn, s

1 (n)
(4.84)

is given in terms of Bn, o , and hence in terms of Bn, s , from the asymptotics
of the }=1 partition function (4.53). This result should now be valid for
all v as we have analytically continued (or rather ``uniformised'') the scaling
function to give us an entire function. The definition of the scaling variable
v implies that the crossover exponent ,=1�2 for all n.

Using the property erfc(&v)=2&erfc(v) in (4.81) leads to

.̂(n)(&v)=.̂(n)(v)&
2C (n)

- ? ev2

v
pb(v) (4.85)

and hence in terms of Kummer's function, for all v

.̂(n)(v)=\1
2+n

Bn, s \U \n,
1
2

, v2++%(v)
2 - ? ev2

1 (n) v
pb(v)+ (4.86)
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The behavior of the scaling function (4.81) as v � \� matches the
fixed } results, as expected from the use of the symbol tb , (15) with

C (n)1 (n) v&2n=\1
2+n

Bn, s v&2n for v � &�

.̂(n)(v)t{C (n) :
n&1

j=0

(&1) j

( j+ 1
2) \

n&1
j +=Bn, s for v=0 (4.87)

2?C (n)

1 (n+ 1
2)

v2n&1ev2
=

2 - ?
1 (n)

Bn, sv2n&1ev2
for v � �

The case v � � comes from the second term of (4.86) noting that pb(v) is
dominated by the term v2n and the other cases follow from the asymptotic
forms of Kummer's function as v � &� ([21, Eq. 13.5.2]) and v � 0
([21, Eq. 13.5.10]). The first of these arises by rewriting the integral as

U \n,
1
2

, v2+=
v2n

1 (n) |
�

0
e&xxn&1 \1+

x
v2+

&(n+1�2)

dx (4.88)

and using the binomial expansion.
Note firstly that our v=0 result is equivalent to the result (4.51)

derived from the product form. Also, note that there is an error in the
results of ref. 3 for the case n=2: Eq. (4.51) should have an extra factor of
} which means that ,� V should have an extra factor of 2. This scaling func-
tion (or rather set of scaling functions) derived above provides a full
description of the dominant asymptotics around the adsorption transition.

5. SUMMARY OF RESULTS

In this paper we have analysed the scaling behavior of n directed walks
interacting with a ``wall'' via a contact potential, with Boltzmann factor },
in the specific case of a watermelon conformation tied to the surface at
both ends, as described in Section 2. We have provided a summary of
rigorous results for the thermodynamic-limit free energy that can easily be
derived for this model (Section 4.1). We have found a recurrence relation
(Eq. (4.38)) for each n that the partition function satisfies. We have used
this recurrence to derive a product form for the partition function at }=2
which is the value of } at which there is an adsorption transition of the
network to the surface. The network exponent (and free energy) at this
value has also been calculated (Eq. (4.49)). Combining the rigorous results
and the }=2 results with a dominant balance analysis of the said recurrence
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leads to the calculation of the free energy and network exponents at all
fixed } (Eqs. (4.57) and (4.58) respectively). Importantly we have used an
expansion of the partition function in a different variable to derive a full
scaling function (Eqs. (4.80), (4.81), (4.82) and (4.83)) around the adsorption
transition for every value of n.
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